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Abstract

We consider the question of global convergence of iterative methods for nonlinear program-
ming problems. Traditionally, penalty functions have been used to enforce global convergence.
In this paper we review a recent alternative, so-called filter methods. Instead of combing the ob-
jective and constraint violation into a single function, filter methods view nonlinear optimization
as a biobjective optimization problem that minimizes the objective and the constraint violation.
We outline the main ideas and convergence results of filter methods and indicate other areas
where filter methods have been used successfully.
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1 Motivation

We consider the question of global convergence for optimization algorithms that solve general
nonlinear programming problems (NLPs):

minimize
x

f(x)
subject to c(x) ≥ 0,

(1.1)

where the objective function f(x) and the constraint functions c(x) are smooth.
Most methods for solving (1.1) are based on Newton’s method and are iterative. Given an

estimate xk of the solution x∗ of (1.1), a linear or quadratic approximation of (1.1) is solved for a
new and, one hopes better, estimate xk+1. Near a solution, this process is guaranteed to converge.
Far from the solution, however, the sequence {xk} generated in this way may not converge. How
can we ensure convergence even if we start far from a solution? We refer to this question as global
convergence for NLP methods.

Traditionally, this question has been answered by using penalty or merit functions that are
a linear combination of the objective function and a measure of the constraint violation such as
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h(x) := ‖c(x)−‖, where ‖a−‖ = ‖min(a, 0)‖ for some norm. An example is the !1 exact penalty
function,

p(x;π) := f(x) + πh(x),

where π > 0 is the penalty parameter. Provided π is sufficiently large, we can use this penalty
function to ensure progress in our iterative scheme by enforcing sufficient decrease on each step.
This trick allows us to invoke well-developed unconstrained optimization techniques.

Unfortunately, a suitable penalty parameter depends on the solution of (1.1), namely, π >

‖y∗‖D, where y∗ are the optimal multipliers and ‖·‖D is the dual norm. This fact makes it difficult to
find a suitable penalty parameter. Worse, if the penalty parameter is too large, then any monotonic
method would be forced to follow the nonlinear constraint manifold very closely, resulting in much
shortened Newton steps and slow convergence. Yet we have noticed that the unmodified sequential
quadratic programming (SQP) method is able to quickly solve a large proportion of test problems
without the need for modifications to induce global convergence.

In this paper we review a recent alternative to penalty functions, so-called filter methods. The
success of the unmodified SQP method motivates us to find a way of inducing global convergence,
which would allow the full Newton step to be taken much more often. Our goal therefore is the
development of global optimization safeguards that interfere as little as possible with Newton’s
method. We believe filter methods achieve this goal. In the remainder of this paper, we motivate
filter methods, outline the main ideas and convergence results, indicate other areas where filter
methods have been used successfully, and provide references for those wishing to delve deeper into
filter methods.

2 Filter Methods for NLP

Filter methods avoid the pitfalls of penalty function methods. Instead of combing the objective and
constraint violation into a single function, we view (1.1) as a biobjective optimization problem that
minimizes f(x) and h(x). However, the second objective is clearly more important because we must
ensure that h(x∗) = 0. We borrow the concept of domination from multiobjective optimization and
say that a point xk dominates a point xl if and only if f(xk) ≤ f(xl) and h(xk) ≤ h(xl). We define
a filter as a list of pairs (h(xl), f(xl)) such that no pair dominates another pair. A typical filter
is illustrated in Figure 1, where the shaded area shows the region dominated by the filter entries.
The contours of the !1 exact penalty function would be straight lines with slope −π in this plot,
indicating that at least for a single entry, the filter is less restrictive than penalty methods.

2.1 Sequential Quadratic Programming Filter Methods

Filter methods were first introduced in the context of trust-region SQP methods, which solve a
quadratic approximation of (1.1) for a trial step s that lies inside a trust region:

min
s

qk(s) := fk +∇fT
k s + 1

2sT Hks

s.t. ck +∇cT
k s ≥ 0

‖s‖∞ ≤ ρk,

(2.1)

where fk = f(xk) and so on, and Hk ' ∇2Lk approximates the Hessian of the Lagrangian.
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Figure 1: A typical filter. All pairs (f(x), h(x)) that are below and to the left of the envelope
(dashed line) are acceptable to the filter

A rough outline of a filter trust-region SQP is as follows. At iteration k = 0, we initialize
the filter Fk = {(U,−∞)}, where U is an upper bound on the acceptable constraint violation.
We proceed by accepting only steps that are not dominated by the current filter. If a point is
acceptable, then we set xk+1 = xk + s, and possibly increase the trust-region radius and update
the filter (adding (k, fk) from the previous iterate and removing any dominated entries). If, on the
other hand, the step is dominated by the current filter, then we reject it, set xk+1 = xk, reduce the
trust-region radius, and resolve (2.1).

This simple description of a filter method requires a number of refinements to ensure conver-
gence:

1. Filter Envelope. To avoid convergence to infeasible limit points where h∗ > 0, we add an
envelope around the current filter. A new iterate is acceptable if, for all ∀(hl, fl) ∈ Fk,

hk+1 ≤ βhl, or fk+1 ≤ fl − γhk+1, (2.2)

where 0 < β, γ < 1 are constants. This sloping envelope is due to Chin [4, 3] and makes the
management of redundant entries slightly more convenient. In [4, Lemma 1] it is shown that
if an infinite number of points are added to the filter, and f(x) is bounded below, then the
limit point must be feasible. We note, that this result does not require the presence of an
upper bound U .

2. Sufficient Reduction. The filter alone cannot ensure convergence to stationary points. For
example, if the sequence satisfies hk+1 ≤ βhk, then the iterates could converge to an arbitrary
feasible point. Therefore, if the constraint violation becomes small, we enforce a sufficient
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reduction condition similar to unconstrained optimization. We denote the predicted reduction
by ∆qk := −∇fT

k s− 1
2sT Hks and introduce the following switching condition:

if ( ∆qk > 0 ) then
check fk − fk+1 ≥ σ∆qk,

(2.3)

where σ ∈ (0, 1) is a constant.

3. Feasibility Restoration. By reducing the trust-region radius, the QP (2.1) may become in-
consistent (halving the trust-region radius in the right plot of Figure 2 illustrates this point).
We take the inconsistency of (2.1) as an indication that the current point is too far from the
feasible set to make meaningful progress to optimality. Hence we invoke an SQP-like algo-
rithm that minimizes the constraint violation h(x) (see Section 3.1). We exit the restoration
phase once a filter-acceptable point has been found and resume the regular SQP method.

With these modifications, we can define acceptance for a filter method.

Definition 2.1 A trial point x+
k := xk + s is acceptable to the filter at iteration k if

1. x+
k is acceptable to the filter Fk and xk, that is, (2.2) holds for Fk ∪ {hk, fk}, and

2. if the switching condition ∆qk > 0 holds, then we have sufficient reduction, that is, fk −
f(x+

k ) ≥ σ∆qk.

Otherwise, we call x+
k not acceptable.

An outline of a filter method is given next.

Algorithm 1: SQP Filter Method
x0, k ← 0, F0 ← {U,−∞}, optimal ← false

while not optimal do
reset the trust-region radius: ρk ≥ ρ
terminate ← false
repeat

solve the QP (2.1) for a step s
if s = 0 then

optimal ← true; STOP
if QP (2.1) incompatible then

add (hk, fk) to Fk

enter restoration phase
else

if x+
k := xk + s not acceptable then
reduce trust-region ρk ← ρk/2

else
terminate ← true

until terminate
update the filter Fk+1

set xk+1 ← xk + s and k ← k + 1
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2.1.1 Discussion of Filter Algorithm

Algorithm 1 contains an inner and an outer iteration. During the inner iteration the trust-region
radius is reduced until we either find an acceptable point or enter the restoration phase. The aim
of the restoration phase is to find an acceptable iterate xk+1 such that the corresponding QP (2.1)
is compatible for some ρk+1 ≥ ρ. The iterates and the filter are updated in the outer iteration,
which also ensures that the trust-region radius is larger than a lower bound ρ > 0.

We update the filter by adding entries (hk, fk) to Fk that correspond to an h-type iteration
after we move to xk+1. We can also remove any entries that are dominated by (hk, fk).

The switching condition (2.3) can be motivated as follows. Close to a feasible point, we expect
the quadratic model to predict a decrease in the objective function, that is, ∆qk > 0. However, far
from a feasible point, the predicted reduction is sometimes negative, that is ∆qk < 0, because most
of the SQP step is toward feasibility. We will refer to successful steps that satisfy (2.3) as f-type
steps and all other steps as h-type steps. This is illustrated in Figure 2: the left plot shows an f-type
step that reduces qk(s), while the right plot shows an h-type step that reduces only infeasibility.
We note that if hk = 0 at a nonstationary point, then ∆qk > 0, thereby implying that we can
accept only an f-type step. Thus, we never add points to the filter for which hk = 0. This fact
ensures that we can always generate a filter-acceptable point during the restoration phase unless
the problem is (locally) infeasible.

2.1.2 Early History of Filter Methods

NLP filter methods were first proposed by Fletcher in a plenary talk at the SIAM Optimization
Conference in Victoria in May 1996; the methods are described in [8]. The initial filter method con-
tained features, such as the NW/SE corner rule and unblocking, that were shown to be redundant
in the subsequent convergence analysis. The first global convergence proof of a filter method was
given in [11] for a sequential linear programming (SLP) method. This proof was later generalized
to SQP methods in [10].

Filter methods for NLP were developed independently of earlier similar ideas. Surry et al. [25]
describe a multiobjective approach to constrained optimization in the context of genetic algorithms.
The algorithm maintains a population of iterates that are evolved over time. The authors modify
a vector-evaluated genetic algorithm to adaptively bias the population toward feasibility.

An idea similar to a filter was used by Lemaréchal et al. [20] to enforce convergence of a
bundle method for convex nonsmooth constrained optimization problems. The authors define an
exclusion region that corresponds to the convex hull of the filter entries (with the two out-most
entries extended to infinity).

2.1.3 Convergence Proof Outline

Convergence of filter methods can be established under the following general assumptions: the
iterates xk lie in a compact set X, the functions f(x) and c(x) are twice continuously differentiable,
and the Hessian remains bounded ‖Hk‖ ≤ M . Under these assumptions, one of the following occurs
(see [10, Theorem 7], [4, Theorem 1], and [27, Theorem 3]):

1. The restoration phase fails to find a filter-acceptable point for which the QP (2.1) is consistent
for some ρ ≥ ρ.
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Figure 2: Illustration of f-type and h-type step.

2. The algorithm terminates at a first-order stationary point.

3. There exists a feasible accumulation point that either is stationary or the Mangasarian-
Fromowitz constraint qualification fails.

These results are as strong as can be expected for general NLPs. For example, the first outcome
corresponds to a situation where the restoration phase has converged to a local minimum of the
constraint violation. One undesirable assumption in [10] is the need for global solution to the QP
subproblem (2.1). This assumption may be difficult to ensure, unless Hk is positive semi-definite.

The convergence proof makes use of the insights from Figure 2. The filter ensures that all limit
points are feasible. Next, we consider two cases: (a) an infinite subsequence of h-type iterations,
and (b) an infinite sequence of f-type steps. We assume that the limit point is not stationary and
seek a contradiction. In case (a), we can show that for sufficiently large k we must generate an
f-type iteration, which contradicts the construction of the sequence. In case (b), we obtain the
usual contradiction that f(xk) is unbounded below.

2.1.4 Fast Local Convergence

The transition of filter methods to fast local convergence had been an outstanding issue from the
start. Early on, we conjectured that filter methods may be able to avoided the Maratos effect. This
effect causes penalty function SQP methods to reject the full SQP step arbitrarily close to a solution,
leading to a loss of second-order convergence. We applied filter methods to the original example
by Maratos and observed second-order convergence. However, the following example shattered the
hope that filter methods can avoid the Maratos effect in general:

minimize
x

2(x2
1 + x2

2 − 1)− x1

subject to x2
1 + x2

1 − 1 = 0.

The starting point x = (cos(t), sin(t)) for t > 0 small and multipliers y = 3/2 shows that the SQP
step increases both f(x) and ‖c(x)‖, leading to a filter-rejected step. This example motivated us
to include second-order correction (SOC) steps. Since then, Ulbrich [27] and Wächter and Biegler
[29] have considered the transition to fast local convergence.

Ulbrich [27] proves fast local convergence without the use of SOC steps by making three modifi-
cations to the filter SQP method: (1) he uses the augmented Lagrangian as a technical tool, which
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motivates an alternative definition of the filter, replacing h(x) and f(x) by

θ(x, y) := ‖c(x)−‖22 + (yT c(x)−)2 and L(x, y)

respectively; (2) the switching condition (2.3) is tightened to

∆q̂k := ∆qk + yT
k sk > κθψ/2

k and ∆Lk(s) < σ∆q̂k,

where ψ ∈ (1
2 , 1) is a constant; and (3) the restoration phase is also entered if the multiplier weigh

inactive constraints too strongly, which happens, if θ1/2
k ≤ κρρ1+ξ, for κρ > 0 and ξ ∈ (0, 1). Under

a linear independence constraint qualification and second-order sufficient condition, Ulbrich is able
to show q-quadratic convergence.

Wächter and Biegler [29] analyze a filter method with SOC steps. SOC steps solve a second
QP that captures constraint curvature and is often cheap to solve, requiring, for example, only a
shift in the QP constraints. Like [27], Wächter and Biegler also modify the switching condition
and strengthen it to

∇fT
k sk < 0 and αk,l(−∇fT

k sk)
sf > δ(hk)sh ,

where αk,l is the Armijo step size and δ > 0, sh > 1, and sf ≥ 2sh are constants. Thus, sufficient
reduction in the objective is checked less frequently than in [10]. The analysis shows that ultimately,
the SQP step or the SOC step is acceptable to the filter implying superlinear convergence for
different types of SOC steps.

We currently prefer to use SOC steps to obtain fast local convergence because this approach
allows us to keep the original filter definition with f(x), rather than the Lagrangian L(x, y). This
approach also avoids the need for a multiplier function.

2.1.5 Other SQP Filter Methods

Fletcher et al. [6] (see also [5, Chapter 15.5]) analyze a trust-region SQP filter method that decom-
poses the SQP step into a normal and tangential step. The normal step attains feasibility for the
linearized constraints of (2.1), and the tangential step reduces a quadratic objective beyond the
Cauchy point while maintaining feasibility. The algorithm uses the envelope

hk+1 ≤ βhj or fk+1 ≤ fj − γhj , ∀j ∈ Fk,

and removes only entries whose envelope is dominated by a new entry. The algorithm also uses a
stronger switching condition, namely, ∆qk ≥ σh2

k, resulting in fewer f-type steps. We note that the
algorithm in [6] removes the need for a global solution of the QP.

Recently, there has been renewed interest in trust-region methods that avoid the solution of the
computationally expensive QP (2.1). One such method is SLP-EQP, which dates back to [12] in
the context of !1-penalty functions. The method solves an LP inside a trust-region to obtain an
estimate of the active set (i.e., setting Hk = 0 in (2.1)). This active set is then explored further by
solving an equality-constrained QP corresponding to the active constraints (with the trust-region
bounds removed). Chin and Fletcher [4] (see also [3]) analyze and implement a filter SLP-EQP
method. Their convergence proof adapts the proof in [11] to allow for a finite set of possible steps,
namely, a Cauchy step (along the LP solution to the first minimum of the quadratic), an EQP step,
and an SOC step.
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Gonzaga et al. [14] propose a general framework for filter methods where the step computation
is decomposed into a normal and tangential step. Unlike [6], however, where the QP solution
is decomposed, Gonzaga et al. enforce filter conditions on both the normal and tangential step.
The normal step must generate an intermediate point xk+1/2 such that the constraint violation is
acceptable to the current point: h(xk+1/2) < βhk. The tangential step must generate a new iterate
that reduces the objective function by an amount that is proportional to the filter slack:

Hk := min (1, min
j∈Fk:fj≤f(xk)

hj).

The step s satisfies ∇cT
k+1/2s + ck+1/2 ≥ 0, and the new point, xk+1 = xk+1/2 + s, satisfies the

following decrease condition:
f(xk+1) ≤ f(xk+1/2)−M

√
Hk.

The authors show that such a step can be computed by minimizing a quadratic model beyond the
Cauchy point within a trust-region framework. In addition, a sufficient decrease condition is also
enforced. This framework is very general, but the step acceptance seems slightly more restrictive.

Ribeiro et al. [22] extend the analysis in [14] by developing a general global convergence analysis
of filter methods that does not depend on the particular way in which the step is computed. Instead,
the authors prove convergence under fairly general assumptions that are shown to hold, for example,
for SQP methods.

Finally, a nonmonotone filter method based on [6] is analyzed in [16]. The authors measure
the area that a new entry contributes to the dominated region. This area is positive for monotone
filters. The key idea is to request that this area be positive on average only over the last K reference
iterations. This strategy allows the filter to accept points that would otherwise be rejected.

2.2 Filter Interior Methods

Interior-point methods (IPMs) are an attractive alternative to SQP methods for solving NLPs.
Instead of computing a step by solving a QP, which can be computationally demanding, IPMs
compute a step by solving a linear system. Thus, it is not surprising that researchers have extended
filter methods to IPMs: Ulbrich et al. [26] and Wächter and Biegler [30] develop convergence theory
for IPM filter methods. A related filter criterion has also been used by Benson et al. [2].

Interior-point methods first reformulate the NLP (1.1) so that the inequalities are simple bound
constraints:

minimize
x

f(x)
subject to c(x) = 0, x ≥ 0.

(2.4)

IPMs can be viewed as applying Newton’s method to the perturbed optimality conditions of (2.4):

Fµ(x, y, z) :=




∇xL(x, y, z)

c(x)
Xz − µe



 = 0, (2.5)

for a decreasing sequence of barrier parameters µ ↘ 0, where X is the diagonal matrix with x along
its diagonal, L(x, y, z) = f(x)− yT c(x)− zT x is the Lagrangian of (2.4), and e = (1, . . . , 1)T . The
IPM filter methods differ significantly in how the filter is employed to achieve global convergence.
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2.2.1 The Interior Filter of Ulbrich et al.

Ulbrich et al. [26] employ the filter to enforce convergence of the IPM as µ ↘ 0. They decompose
the perturbed optimality conditions into a normal (rn) and tangential (rt) component,

Fσµ′(x, y, z) = rn + rt

=




0

c(x)
Xz − µ′e



 +




∇xL(x, y, z)

0
(1− σ)µ′e



 ,

where µ = µ′σ, and µ′ = xT z/n, and σ ∈ (0, 1) is a centering parameter. This decomposition
motivates the two filter components and a consistent step decomposition. Denoting w = (x, y, z),
the filter is defined a a collection of pairs of a measure of quasicentrality

θ(w) := ‖c(x)‖+ ‖Xz − xT z/n · e‖

and a measure of optimality
θg(w) := ‖∇xL(w)‖+ xT z/n.

Each step s = (sx, sy, sz) is computed from a normal and tangential step,

F ′(w)sn = −rn, F ′(w)st = −rt,

where F ′(w) is the Jacobian of Fσµ′(w). The authors exploit the flexibility of choosing different step
sizes for each component. Once a step has been computed, the algorithm performs a backtracking
line search until a filter-acceptable point has been found. Similar to SQP filter methods, the
algorithm also enforces a sufficient decrease condition on a quadratic model of the residual of θg(w).
If no acceptable point can be found, then a restoration phase is entered to restore quasicentrality.

Under the strong assumption that the inverse of the Jacobian is bounded, namely, ‖[F ′(w)]−1‖ ≤
C, the authors show finite termination of the restoration phase and the existence of a subsequence
converging to a stationary point. The step decomposition has a similar flavor to [6], but the two
components have a slightly different interpretation, with quasicentrality replacing feasibility and the
optimality measure θg(w) replacing the objective. The latter condition means that the algorithm
may be more likely to converge to stationary points that are not local minimizers. The IPM of
Wächter and Biegler avoids this problem by taking a different approach.

2.2.2 The Filter of Wächter and Biegler

Wächter and Biegler [30] have successfully incorporated a filter mechanism in the NLP solver
IPOPT [31]. They develop a line-search filter method that avoids the pitfall of many IPMs that
may converge to spurious stationary points illustrated by the example in [28]. Wächter and Biegler
exploit the relationship between (2.5) and the barrier problem

min
x

ϕµk(x) := f(x)− µk
∑

ln(xi)
s.t. c(x) = 0.

(2.6)

IPOPT performs a number of line-search SQP iterations to minimize (2.6) to within a tolerance
εk ↘ 0, whilst keeping xi > 0. In contrast to [26], where the filter safeguards the convergence
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of IPM as µ ↘ 0, IPOPT employs the filter only for fixed µk to ensure convergence of the SQP
algorithm. This approach is justified because it can be shown that for a suitable choice of the
sequences µk ↘ 0, εk ↘ 0 one SQP iteration and an extrapolation step are sufficient to generate
an acceptable point near a solution.

A consequence of employing the filter for a fixed barrier parameter is that we can now use
(h(x),ϕ(x)) again in the filter. Hence, the method is less likely to converge to stationary points
that are not minimizers.

Another important difference from [26] is the absence of a full-rank assumption, which provides
robustness for degenerate and infeasible NLPs. As a consequence, however, we must modify the
Armijo line-search because a poor step may never be acceptable no matter how small a step size is
chosen. Therefore, [30] derives a lower bound that indicates when the algorithm should switch to
a restoration phase. The restoration algorithm in [30] differs from the SQP restoration algorithms
in the sense that it must also produce a new point xk+1 ≥ εe that is strictly feasible with respect
to the bounds.

The analysis in [30] is general and includes as special cases SQP methods, IPMs, and augmented
Lagrangian methods. The augmented Lagrangian is another popular penalty function:

Lπ(x, y) := f(x)− yT c(x) +
π

2
c(x)T c(x).

We can split this function into two “objectives” similar to the way we split the exact penalty
function. This motivates a filter method where the Lagrangian L(x, y) replaces f(x). The analysis
is readily extended by including a line search on the multipliers y and by modifying the switching
condition in an obvious way. We note, that this is similar to the filter in [27]

Benson et al. [2] have also included a filter-like mechanism in LOQO. The filter used in LOQO
consists of a single entry. We are not sure that this device alone can guarantee convergence. The
practical performance of LOQO has been encouraging, however, underlining the computational
advantage of filter methods.

3 Filters beyond NLP

Filter methods have been extended to other areas of optimization such as nonlinear equations
and inequalities [9, 15, 17], nonsmooth optimization [7, 19, 21], unconstrained optimization [18],
derivative-free optimization [1], and augmented Lagrangian methods [13].

3.1 Nonlinear Equations

We have developed a filter SQP method for solving a nonlinear system of inequalities c(x) ≥ 0 in
[9], similar to the restoration phase suggested in [8]. Formulating c(x) ≥ 0 as a norm minimization
problem,

minimize
x

h(x) := ‖c(x)−‖, (3.1)

allows us to define two objectives and apply the filter concept. We divide the constraints into two
sets indexed by J and its complement J⊥: the set J⊥ collects the constraints that are close to
being satisfied, and the set J collects the constraints that are difficult to satisfy. This partition
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gives rise to the following feasibility problem,

minimize
x

∑

i∈J

ci(x)−

subject to ci(x) ≥ 0 ∀i ∈ J⊥,
(3.2)

which can be interpreted as a weighted !1 constraint residual minimization. The sets J and J⊥ can
be chosen adaptively as long as we ensure that

J ⊂ {i|ci(x) < 0}.

Motivated by the feasibility problem (3.2), we define the two filter entries as

fJ(x) :=
∑

i∈J

ci(x)− and hJ(x) :=
∑

i∈J⊥

ci(x)−,

respectively. We apply an SQP method to the minimization of (3.2) that enables us to achieve fast
local convergence even if no feasible solution exists.

So far, the filter methods have been concerned with two competing aims. However, filter
algorithms can also be developed for more objectives. In [15], we develop a multi-dimensional filter
for the solution of c(x) = 0. The idea is to split the constraint residuals into p components

hj(x) := ‖cIj (x)‖, j = 1, . . . , p,

where {1, . . . ,m} = I1 ∪ . . . ∪ Ip. We adapt the filter-acceptability by saying that a trial point x+
k

is acceptable if and only if, ∀l ∈ Fk,

∃j ∈ {1, . . . , p} : hj(x+
k ) < hj(xl)− β‖h(xl)‖,

where β ∈ (0, 1/
√

p) ensures that the right-hand side of this condition always has at least one
positive entry, which ensures that we can always generate a filter-acceptable point. The algorithm
minimizes a Gauss-Newton or, alternatively, a Newton-model of the least-squares formulation of
c(x) = 0:

minimize
x

f(x) :=
1
2
‖h(x)‖22.

The trust region is enforced only if a trial point is not filter-acceptable. The resulting algorithm
is very nonmonotone and works best if we choose p = m. We extend this work in [17] to general
feasibility problems such as (3.1) by defining hj(x) := ‖cIj (x)−‖, j = 1, . . . , p.

This multidimensional filter is also extended to unconstrained minimization in [18] by casting the
minimization of f(x) as the solution of the system ∇f(x) = 0. The algorithm contains provisions
for negative curvature and is shown to be convergent to second-order critical points. We generalize
this algorithm to bound-constrained optimization in [24]. In related work, Sainvitu [23] studies the
effect of using approximate derivatives within a filter method.

3.2 Nonsmooth Optimization

Filter methods for nonsmooth optimization provide a convenient extension of bundle methods to
include nonsmooth constraints. We can assume without loss of generality, that the nonsmooth
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NLP has only a single constraint c(x) ∈ IR, because we can reformulate multiple constraints as a
single constraint using the max-function. In [7], we present a straightforward extension of of filter
methods to bundle trust-region methods. We use two bundles (one for the objective, and one for
the constraints) and solve an LP inside a trust region for a step. The convergence analysis is an
extension of the SLP convergence proof in [11].

In contrast, the filter method of Karas et al. [19] combines ideas from proximal point methods
and filter methods. The authors create a cutting plane model of the improvement function

gx(y) := max {f(y)− f(x),−c(y)}.

This function allows standard unconstrained proximal point methods to be used and requires only a
single bundle to be maintained. The authors establish convergence to stationary points and present
encouraging numerical results.

A recent variable-metric filter method is presented in [21].

3.3 Derivative-Free Optimization

Audet and Dennis [1] incorporate filter into a pattern-search method for derivative-free constrained
optimization. Pattern-search methods target “black-box” applications, where the problem functions
f(x) and c(x) are available only as oracles, and derivative information is prohibitive to obtain. The
filter in [1] differs in three important aspects from the filters described above: (1) it requires
only simple decrease similar to unconstrained pattern-search algorithms, (2) the incumbent (POLL
center) is either feasible or the least infeasible iterate, and (3) the filter includes an entry (0, fF )
corresponding to a feasible iterate. A new point x+

k is acceptable if either of the following two
conditions hold:

h(x+
k ) = 0 and f(x+

k ) < fF

or
h(x+

k ) < hl or f(x+
k ) < fl, ∀l ∈ Fk.

The authors extend the usual patter-search convergence results to filter methods.

3.4 Augmented Lagrangian

An augmented Lagrangian filter method for QPs is developed in [13]. The algorithm efficiently
accommodates matrix-free implementation and is based on two main phases. First, gradient pro-
jection iterations approximately minimize the augmented Lagrangian function and provide an es-
timate of the optimal active set. Second, an equality-constrained QP is approximately minimized
on this subspace in order to generate a second-order search direction.

The iterations of augmented Lagrangian methods typically are controlled by two fundamental
forcing sequences that ensure convergence to a solution. A decreasing sequence ωk ↘ 0 determines
the required optimality of each subproblem solution and controls the convergence of the dual
infeasibility. The second decreasing sequence, ηk ↘ 0, tracks the primal infeasibility ‖Ax− b‖ and
determines whether the penalty parameter ρk is increased or left unchanged.

In the definition of our filter we use quantities that are analogous to ωk and ηk. Define

h(x, y) = ‖min (x,∇xL(x, y))‖,
f(x) = ‖Ax− b‖,
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which are based on the optimality and feasibility of a current pair (x, y). The axis in this filter
appear to be the reverse of the usual definition (f(x) measures feasibility). This choice reflects
the dual view of the augmented Lagrangian: it can be shown that Axk − b is a steepest descent
direction for the augmented Lagrangian. We use the filter, rather than the usual forcing sequences,
to terminate the inner iteration (minimization of the augmented Lagrangian).

4 Conclusions

We have presented filter methods that promote convergence for constrained optimization algorithms
without the need of artificial penalty parameters. Filter methods are an alternative to penalty
function methods and build on the concept of domination from multiobjective optimization. Filter
methods were initially designed for nonlinear programming problems but have quickly become
popular in other areas such as nonlinear equations, nonsmooth optimization, and derivative-free
methods. We believe that filter methods will continue to grow and find application in more diverse
areas.
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Rio de Janeiro, Brazil, 2005.
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